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Abstract

Data processing means applying some algorithm f(x1, . . . , xn) to the values of the quan-
tities x1, . . . , xn, resulting in a value y = f(x1, . . . , xn). Values xi usually come from
measurements. Measurement are never absolutely accurate; the measurement result x̃i is,
in general, different from the actual (unknown) value xi of the corresponding quantity:
∆xi

def
= x̃i − xi 6= 0. Because of the this, the computed value ỹ = f(x̃1, . . . , x̃n) is, in gen-

eral, different from the ideal value y = f(x1, . . . , xn). It is therefore desirable to estimate
the accuracy ∆y

def
= ỹ − y.

In many practical situations, the measurement errors are relatively small. In such cases,
we can safely ignore terms which are quadratic or higher order in ∆xi, and conclude that

∆y =
n∑

i=1
ci ·∆xi, where ci

def
=

∂f

∂xi

.

When we know the probability distributions for all ∆xi (and we know that they are
independent), then we can use Monte-Carlo techniques: several times k = 1, . . . , N , we
simulate ∆x

(k)
i , then the differences ỹ − f(x̃1 − ∆x

(k)
1 , . . . , xn − ∆x(k)

n ) have the same
distribution as ∆y.

Alternatively, we can use numerical differentiation to estimate all the derivatives ci, and
then use the above formula, but this would require n+ 1 calls to the algorithm f , which for
large n can be too long. In contrast, the Monte-Carlo method needs N + 1 calls, where N
is determined only by the accuracy with which we want ∆ (and does not depend on n).

In many practical situations, we only know the upper bound ∆i on each measurement
error ∆xi: |∆xi| ≤ ∆i. In this case, the only information that we have about the unknown
(actual) value xi is that it is in the interval [x̃i −∆i, x̃i + ∆i]. In this case, the value ∆y is

bounded by ∆ =
n∑

i=1
|ci| ·∆i. A straightforward computation of ∆ requires n+1 calls to f ,

but there is a faster method based on using Cauchy distribution: we simulate ∆x
(k)
i based

on Cauchy with parameter ∆i, then the differences ỹ− f(x̃1−∆x
(k)
1 , . . . , xn−∆x(k)

n ) are
Cauchy distributed with the desired parameter ∆.

This method works, but its simulation is not realistic: we know that |∆xi| ≤ ∆i, but a
Cauchy distribution goes beyond this bound. It has been known that if we consider sim-
ulations in which all ∆x

(k)
i are independent, then no realistic Monte-Carlo technique can

always compute ∆. In this paper, we prove that this result holds even without the indepen-
dence assumption, i.e., that the simulated values ∆x

(k)
i have to go beyond [−∆i,∆i].


